Developing Models Inspired by CNN and DNN for more Effective Precipitation Forecasting Techniques

Authors

  • Waleed Ahmed Hassen Al-Nuaami

Keywords:

Convolution Neural Network, City mean precipitation, forecasting, Deep Neural Network

Abstract

The study aims to analyze some changes in rainfall behavior in (10) global cities, including Tokyo, Osaka, Shanghai, Chicago, Istanbul, Buenos Aires, Amsterdam, Madrid, Florance, and New York using an advanced machine learning (ML) approach for predicting the average precipitation. Utilizing the Deep Neural Network (DNN) and Convolution Neural Network (CNN) model, we have acquired mean precipitation monthly data from the selected cities with covering the period of 2000-2023. In order to assess mean precipitation in cities, we effectively employed both the average mutual information (AMI) during the model’s development. Constructed using both a training subset (80% of data from 2000 to 2018) and a testing subset (20% of data from 2019 to 2023), MP forecasting models for ten cities were established. When compared to the DNN model, the CNN model truly shined by showcasing its remarkable potential as a high-level model in accurately estimating mean precipitation values of cities while demonstrating superior generalization ability and minimal variance.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature, 525(7567), 47-55.

Chung, K. S., & Yao, I. A. (2020). Improving radar echo Lagrangian extrapolation nowcasting by blending numerical model wind information: Statistical performance of 16 typhoon cases. Monthly Weather Review, 148(3), 1099-1120.

Chau, K. W., & Wu, C. L. (2010). A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. Journal of Hydroinformatics, 12(4), 458-473.

Dash, Y., Mishra, S. K., & Panigrahi, B. K. (2018). Rainfall prediction for the Kerala state of India using artificial intelligence approaches. Computers & Electrical Engineering, 70, 66-73.

Dastorani, M., Mirzavand, M., Dastorani, M. T., & Sadatinejad, S. J. (2016). Comparative study among different time series models applied to monthly rainfall forecasting in semi-arid climate condition. Natural Hazards, 81, 1811-1827.

Elbeltagi, A., Raza, A., Hu, Y., Al-Ansari, N., Kushwaha, N. L., Srivastava, A., ... & Zubair, M. (2022). Data intelligence and hybrid metaheuristic algorithms-based estimation of reference evapotranspiration. Applied Water Science, 12(7), 152.

Foresti, L., Sideris, I. V., Nerini, D., Beusch, L., & Germann, U. (2019). Using a 10-year radar archive for nowcasting precipitation growth and decay: A probabilistic machine learning approach. Weather and Forecasting, 34(5), 1547-1569.

Ghorbani M, Kahya E, Ruskeepää H, Roshni T, Kashani MH, Karimi V, Arikan BB (2022) Temporal connections in reconstructed monthly rainfall time series in different rainfall regimes of Turkey. Arab J Geosci 15: 1015

Kareem, S., Hamad, Z. J., & Askar, S. (2021). An evaluation of CNN and ANN in prediction weather forecasting: A review. Sustainable Engineering and Innovation, 3(2), 148-159.

Kisi, O., & Cimen, M. (2012). Precipitation forecasting by using wavelet-support vector machine conjunction model. Engineering Applications of Artificial Intelligence, 25(4), 783-792.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.

Li, P., Zhang, J., & Krebs, P. (2022). Prediction of flow based on a CNN-LSTM combined deep learning approach. Water, 14(6), 993.

Li, W., Pan, B., Xia, J., & Duan, Q. (2022). Convolutional neural network-based statistical post- processing of ensemble precipitation forecasts. Journal of hydrology, 605, 127301.

Li, G., Chang, W., & Yang, H. (2020). A novel combined prediction model for monthly mean precipitation with error correction strategy. IEEE Access, 8, 141432-141445.

Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 2674.

Lohani, A. K., Goel, N. K., & Bhatia, K. K. S. (2006). Takagi–Sugeno fuzzy inference system for modeling stage–discharge relationship. Journal of Hydrology, 331(1-2), 146-160.

Malik, A., Tikhamarine, Y., Al-Ansari, N., Shahid, S., Sekhon, H. S., Pal, R. K., ... & Sammen, S.

S. (2021). Daily pan-evaporation estimation in different agro-climatic zones using novel hybrid support vector regression optimized by Salp swarm algorithm in conjunction with gamma test. Engineering Applications of Computational Fluid Mechanics, 15(1), 1075-1094.

Miao, Q., Pan, B., Wang, H., Hsu, K., & Sorooshian, S. (2019). Improving monsoon precipitation prediction using combined convolutional and long short term memory neural network. Water, 11(5), 977.

Milosevic, N., Corchero, M., Gad, A. F., & Michelucci, U. (2020). Introduction to convolutional neural networks: with image classification using PyTorch. Apress.

Maheswaran, R., & Khosa, R. (2014). A wavelet-based second order nonlinear model for forecasting monthly rainfall. Water resources management, 28, 5411-5431.

Nerini, D., Foresti, L., Leuenberger, D., Robert, S., & Germann, U. (2019). A reduced-space ensemble Kalman filter approach for flow-dependent integration of radar extrapolation nowcasts and NWP precipitation ensembles. Monthly Weather Review, 147(3), 987-1006.

Nourani, V., Alami, M. T., & Aminfar, M. H. (2009). A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Engineering Applications of Artificial Intelligence, 22(3), 466-472.

O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458.

Pan, B., Hsu, K., AghaKouchak, A., & Sorooshian, S. (2019). Improving precipitation estimation using convolutional neural network. Water Resources Research, 55(3), 2301-2321.

Papacharalampous, G., Tyralis, H., & Koutsoyiannis, D. (2019). Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes. Stochastic environmental research and risk assessment, 33(2), 481-514.

Park, H. I., & Lee, S. R. (2011). Evaluation of the compression index of soils using an artificial neural network. Computers and Geotechnics, 38(4), 472-481.

Pulkkinen, S., Nerini, D., Pérez Hortal, A. A., Velasco-Forero, C., Seed, A., Germann, U., & Foresti, L. (2019). Pysteps: An open-source Python library for probabilistic precipitation nowcasting (v1. 0). Geoscientific Model Development, 12(10), 4185-4219.

Qiu, J., Shen, Z., Wei, G., Wang, G., Xie, H., & Lv, G. (2018). A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed. Environmental Science and Pollution Research, 25, 6514-6531.

Ryu, S., Lyu, G., Do, Y., & Lee, G. (2020). Improved rainfall nowcasting using Burgers’ equation. Journal of Hydrology, 581, 124140.

Rezaie-Balf, M., Zahmatkesh, Z., & Kim, S. (2017). Soft computing techniques for rainfall-runoff simulation: local non–parametric paradigm vs. model classification methods. Water Resources Management, 31, 3843-3865.

Ridwan, W. M., Sapitang, M., Aziz, A., Kushiar, K. F., Ahmed, A. N., & El-Shafie, A. (2021). Rainfall forecasting model using machine learning methods: Case study Terengganu, Malaysia. Ain Shams Engineering Journal, 12(2), 1651-1663.

Sammen, S. S., Ehteram, M., Abba, S. I., Abdulkadir, R. A., Ahmed, A. N., & El-Shafie, A. (2021). A new soft computing model for daily streamflow forecasting. Stochastic Environmental Research and Risk Assessment, 35(12), 2479-2491.

Sønderby, C. K., Espeholt, L., Heek, J., Dehghani, M., Oliver, A., Salimans, T., ... & Kalchbrenner,

N. (2020). Metnet: A neural weather model for precipitation forecasting. arXiv preprint arXiv:2003.12140.

Sun, L., Lan, Y., & Jiang, R. (2023). Using CNN framework to improve multi-GCM ensemble predictions of monthly precipitation at local areas: An application over China and comparison with other methods. Journal of Hydrology, 623, 129866.

Shi, X., Chen, Z., Wang, H., Yeung, D. Y., Wong, W. K., & Woo, W. C. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Advances in neural information processing systems, 28. 802-810.

Ujong, J. A., Mbadike, E. M., & Alaneme, G. U. (2022). Prediction of cost and duration of building construction using artificial neural network. Asian Journal of Civil Engineering, 23(7), 1117- 1139.

Woo, W. C., & Wong, W. K. (2017). Operational application of optical flow techniques to radar- based rainfall nowcasting. Atmosphere, 8(3), 48.

Wu, W., Guozhi, W., Yuanmin, Z., & Hongling, W. (2009, May). Genetic algorithm optimizing neural network for short-term load forecasting. In 2009 International Forum on Information Technology and Applications (Vol. 1, pp. 583-585). IEEE

Downloads

Published

2024-06-22

How to Cite

Waleed Ahmed Hassen Al-Nuaami. (2024). Developing Models Inspired by CNN and DNN for more Effective Precipitation Forecasting Techniques. Al Kut Journal of Economics and Administrative Sciences, 16(51), 354–386. Retrieved from https://kjeas.uowasit.edu.iq/index.php/kjeas/article/view/767